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Abstract
The long-time dynamics of the d-dimensional spherical model with a non-
conserved order parameter and quenched from an initial state with long-
range correlations is studied through the exact calculation of the two-time
autocorrelation and autoresponse functions. In the ageing regime, these are
given in terms of non-trivial universal scaling functions of both time variables.
At criticality, five distinct types of ageing are found, depending on the form
of the initial correlations, while at low temperatures only a single type of
ageing exists. The autocorrelation and autoresponse exponents are shown to
be generically different and to depend on the initial conditions. The scaling
form of the two-time response functions agrees with a recent prediction coming
from conformal invariance.

PACS numbers: 05.70.Jk, 64.60.−i

1. Introduction

The slow dynamics of non-equilibrium systems displays several characteristic features which
are absent for systems in thermodynamic equilibrium (see [1–4] for review). Most notable
among these are the breakdown of the fluctuation–dissipation theorem and the ageing of
the system as conveniently displayed in the two-time autocorrelation and autoresponse
functions. While these features were first observed in glassy systems, they also occur in
simple ferromagnetic spin systems without disorder. The present paper studies such relatively
simple non-equilibrium systems.

Usually, the system is prepared in some initial state (a completely disordered initial state
of effective infinite temperature is common) and then brought out of equilibrium, even at
very long times, by a rapid quench to some final temperature T which may be below or
equal to the critical temperature Tc. The subsequent evolution then takes place at that fixed
temperature T. The main observables include the two-time autocorrelation function C(t, s)
1 Laboratoire associé au CNRS UMR 7556.
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and the autoresponse function R(t, s) where s is the waiting time and t the observation time.
A convenient way to characterize the distance of the system from equilibrium is through the
fluctuation–dissipation ratio [2, 5, 6]

X(t, s) = TR(t, s)

(
∂C(t, s)

∂s

)−1

. (1.1)

At equilibrium, both C and R depend only on the time difference τ = t−s andX = X(τ) = 1.
Physically, this is realized if the initial quench was made to some temperature T > Tc. Then
for timescales large as compared to the (finite) characteristic timescale τeq, the system relaxes
exponentially fast towards equilibrium.

On the other hand, if either T < Tc or T = Tc, an infinite spin system does not reach
equilibrium on some finite timescale but instead undergoes either phase-ordering kinetics or
non-equilibrium critical dynamics. In both cases, two-time observables such as C = C(t, s)

andR = R(t, s) depend on both the waiting time s and the observation time t and not merely on
their difference τ = t−s. This breaking2 of time translation invariance is usually referred to as
ageing and will be used in this sense from now on. Consequently, the fluctuation–dissipation
ratio X = X(t, s) �= 1 also becomes a non-trivial function of both s and t. Empirically, it is
well established [1] that the ageing process is associated with dynamical scaling, that is in the
scaling regime with times 1 � s, τ long enough after the initial quench, one finds

C(t, s) ∼ s−bfC(t/s) R(t, s) ∼ s−1−afR(t/s) (1.2)

where a, b are non-equilibrium critical exponents and fC and fR are scaling functions. Here
and in the following we always have t > s. For large arguments x = t/s � 1, these scaling
functions typically behave as

fC(x) ∼ x−λC/z fR(x) ∼ x−λR/z (1.3)

where z is the dynamical exponent and λC, λR are the autocorrelation [8, 9] and autoresponse
exponents3. Throughout this paper, we are only interested in this late-time regime where
scaling occurs.

Usually, the long-time behaviour after a quench from a completely disordered state is
studied. In this case, the available evidence as reviewed in [4], and based on results notably
from the Glauber–Ising model [10, 11] and the spherical model with a non-conserved order
parameter [12, 13] is consistent with the autocorrelation and autoresponse exponents being
equal, λC = λR , and, for a quench exactly onto criticality T = Tc, with the additional relation
a = b. However, exceptions to this rule exist. Consider the 2D XY model with a fully
ordered zero-temperature initial state and quenched ‘upwards’ to some temperature T < TKT,
where TKT is the Kosterlitz–Thouless transition temperature. A recent calculation by Berthier,
et al [14] based on the spin-wave approximation has produced analytical results for both the
autocorrelation and autoresponse scaling functions fC(x) and fR(x) and found the scaling ‘in
complete agreement with the results obtained by Godrèche and Luck [13] for the spherical
model at the critical point’ [14, p 1809]. Indeed one has a = b = η/2, where η = η(T ) is the
usual static (and temperature-dependent) critical exponent, but the autocorrelation exponent
λC/z = η/4 and the autoresponse exponent λR/z = 1 +η/4 [14] are different from each other.
We therefore ask ourselves, what may generically become of the relation between λC and λR
for more general initial states than for fully disordered or fully ordered ones. Beyond a case
study in a given model, this allows a test of the generic scaling and universality properties as
2 This is associated with a breaking of the fluctuation–dissipation theorem. The timescale on which this breaking
occurs has been studied very thoroughly in [7].
3 The values of the exponents λC, λR (and also a, b) depend on whether T < Tc or T = Tc, but we shall use the
same notation in both cases.
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reviewed above and should provide useful insight. The role of the initial conditions on ageing
in spin-glasses has been and continues to be actively studied (see [12, 15] and references
therein).

Questions of this sort are best addressed first in some non-trivial exactly solvable model
before being studied further through simulations. We shall therefore examine for the kinetic
spherical model described by a non-conserved Langevin equation (see section 2 for precise
definitions) the role of long-range correlations in the initial state which are characterized
by a power law for the Fourier transformation C̃(q) of the spin–spin correlator, in the low-
momentum limit |q| → 0,

C̃(q) ∼ |q|α (1.4)

and we shall study how the above scaling forms are affected, if at all, by varying α. We
can therefore interpolate between a disordered initial state with α = 0 and a fully ordered
state (α = −d) as considered in [14]. While much is already known for T < Tc [16],
we shall see that for T = Tc there occur several new regimes for the long-time ageing
behaviour which depend on the value of α. Our calculations suggest the new scaling relation
λC = λR + αeff , where αeff = αeff(α) is the effective value of α which actually describes the
long-time behaviour. We shall show that this also explains the results obtained in the 2D XY
model [14] which are referred above.

Furthermore, introducing a new parameter into the kinetics permits an instructive test of
the assertion by Godrèche and Luck [13] that the limit fluctuation–dissipation ratio

X∞ = lim
s→∞ lim

t→∞X(t, s) (1.5)

is a universal number and we shall indeed confirm this universality (see section 3).
Finally, we recall that recently the precise form of the autoresponse function R(t, s)

was derived from conformal invariance [17], with t, s � 1 being inside the scaling regime
[18, 19]:

R(t, s) = r0

(
t

s

)1+a−λR/z
(t − s)−1−a (1.6)

where r0 is a normalization constant. As we shall see in section 4, this functional form is
indeed recovered, but the exponents a and λR will be functions of α.

The structure of this paper is as follows. In the next section, to give a self-contained
presentation, we recall the main steps of the general formalism for the exact calculation of
correlation and response functions. In section 3, we analyse these in the scaling limit where
ageing occurs and find the scaling functions fC(x) and fR(x) as functions of the initial
conditions characterized by the parameter α. In section 4, the physical conclusions from
these calculations are drawn. In the appendix, we shall briefly present some results on initial
conditions in the 1D Glauber–Ising model such that the mean magnetization is non-vanishing.

2. Formalism

We now describe the calculation of the two-time autocorrelation and autoresponse functions
in the exactly solvable spherical model in d spatial dimensions, for arbitrary initial conditions.
Our calculation follows closely the standard lines established several times in the past (see
[16, 20–24] for continuum field theories and [7, 12, 13, 25, 26] for lattice models). The effects
of specific initial conditions on the long-time behaviour and ageing will be analysed in the
next section.
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The spherical model is defined in terms of real spin variables Sr attached to the sites of a
d-dimensional hypercubic lattice and subject to the constraint∑

r

S2
r = N (2.1)

where N is the total number of sites and the usual spin Hamiltonian H = −∑
(r,r′) SrSr′

where the sum extends over the nearest neighbour pairs only. The (non-conserved) dynamics
is given by the stochastic Langevin equation:

dSr

dt
=
∑
s(r)

Ss − (2d + z(t))Sr + ηr(t) (2.2)

where s(r) are the nearest neighbour sites of the site r, the Gaussian white noise ηr(t) has
the correlation

〈ηr(t)ηr′(t ′)〉 = 2T δr,r′δ(t − t ′) (2.3)

and z(t) is determined by satisfying the spherical constraint (2.1) in the mean. By a Fourier
transformation

f̃ (q) =
∑

r

fr e−iq·r fr = (2π)−d
∫
B

dq f̃ (q) eiq·r (2.4)

where the integral is over the first Brillouin zone B, equation (2.2) is transformed into

∂S̃(q, t)

∂t
= −[ω(q) + z(t)] S̃(q, t) + η̃(q, t) (2.5)

where in addition, together with the |q| → 0 limit

ω(q) = 2
d∑
i=1

(1 − cos qi) 
 q2 〈η̃(q, t)η̃(q′, t ′)〉 = 2T (2π)dδd(q + q′)δ(t − t ′). (2.6)

The formal solution is [12, 13]

S̃(q, t) = exp(−ω(q)t)√
g(T , t)

[
S̃(q, 0) +

∫ t

0
dt ′ eω(q)t

′√
g(T , t ′) η̃(q, t ′)

]
(2.7)

g(T , t) = exp

(
2
∫ t

0
dt ′z(t ′)

)
which forms the basis for all subsequent calculations.

The Lagrange multiplier g(T , t) is determined from the spherical constraint and the initial
conditions. To see this, consider the equal-time spin–spin correlation function

Cr−r′(t) = 〈Sr(t)Sr′(t)〉 (2.8)

where spatial translation invariance is already taken into account. Here and in the following,
the brackets denote the average over the ensemble of the initial conditions and over the thermal
histories, i.e. the realizations of the noise ηr(t). The spherical constraint (2.1) implies that

C0(t) = 〈Sr(t)Sr(t)〉 = 1. (2.9)

In Fourier space the equal-time correlator C̃(q, t) is obtained from

〈S̃(q, t)S̃(q′, t)〉 = (2π)dδd(q + q′)C̃(q, t) (2.10)

and is given by

C̃(q, t) = exp(−2ω(q)t)

g(T , t)

[
C̃(q, 0) + 2T

∫ t

0
dt ′e2ω(q)t ′g(T , t ′)

]
. (2.11)
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From the spherical constraint (2.9), we have in Fourier space that
∫

dq(2π)−d C̃(q, t) = 1, and
this leads to the following Volterra integral equation for g(T , t) (see [12, 13]),

g(T , t) = A(t) + 2T
∫ t

0
dt ′f (t − t ′)g(T , t ′) (2.12)

where the two auxiliary functions f (t) and A(t) are defined as follows:

f (t) = 1

(2π)d

∫
dq e−2ω(q)t = (

e−4t I0(4t)
)d

A(t) = 1

(2π)d

∫
dq e−2ω(q)t C̃(q, 0)

(2.13)

and where I0 is a modified Bessel function [27]. The solution of equation (2.12) is found from
a Laplace transformation:

f (p) =
∫ ∞

0
dt f (t) e−pt (2.14)

and is given by

g(T , p) = A(p)

1 − 2T f (p)
. (2.15)

Therefore the entire evolution of the system, starting from a freely chosen initial condition,
can be described in terms of the properties of the functions f (t) and A(t). In particular, the
initial state is characterized exclusively by the initial correlator C̃(q, 0) and these data enter
explicitly only into the functionA(t). The simplest case may be considered to be an initial state
without any correlations. Then Cr(0) = δr,0, therefore C̃(q, 0) = 1 and thus A(t) = f (t).
This case has been analysed in great detail (see [7, 12, 26] and in particular [13]).

We postpone the analysis of the effects of initial conditions given by C̃(q, 0) to the next
section and now give the general expressions for the two-time correlators and the two-time
response functions. The two-time correlation function is defined as

Cr−r′(t, s) = 〈Sr(t)Sr′(s)〉 (2.16)

where s is the waiting time, t the observation time and t � s � 0 always. In Fourier space, it
is easy to see that

C̃(q, t, s) = C̃(q, s) e−ω(q)(t−s)
√
g(T , s)

g(T , t)
(2.17)

and where expression (2.11) for the single-time correlator has been used. Below, we shall be
mainly interested in the two-time autocorrelation:

C(t, s) = C0(t, s) = (2π)−d
∫

dqC̃(q, t, s)

= 1√
g(T , t)g(T , s)

[
A

(
t + s

2

)
+ 2T

∫ s

0
ds′f

(
t + s

2
− s ′

)
g
(
T , s ′

)]
(2.18)

which we shall analyse in the next section. The response function is obtained in the usual
way [12, 13, 21, 22] by adding a small magnetic field term δH = −∑

r hr(t)Sr(t) to
the Hamiltonian. This leads to an extra term hr(t) on the right-hand side of the Langevin
equation (2.2). Provided that causality and spatial translation invariance hold, we have to first
order

〈Sr(t)〉 =
∫ t

0
ds
∑
r′
Rr−r′(t, s)hr′(s) + · · · (2.19)
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which defines the (linear) response function Rr(t, s). The calculation is completely standard
[12, 13, 21] and we merely quote the result

R̃(q, t, s) = δ〈S̃(q, t)〉
δh̃(q, s)

∣∣∣∣
hr=0

= e−ω(q)(t−s)
√
g(T , s)

g(T , t)
. (2.20)

Again, we shall be mainly concerned with the autoresponse function

R(t, s) = R0(t, s) = (2π)−d
∫

dq R̃(q, t, s) = f

(
t − s

2

)√
g(T , s)

g(T , t)
(2.21)

Equations (2.11), (2.18) and (2.21) give the single-time correlation function and two-time
autocorrelation and autoresponse functions, respectively, for yet arbitrary initial conditions.
Together with the spherical constraint (2.12), which fixes the function g(T , t) in terms of the
auxiliary functions f (t) and A(t), these are the main results of this section.

3. Analysis

Our aim is to consider the effects of long-range correlations in the initial state on the long-time
and ageing behaviours of the model. For the long-time behaviour, only the low-momentum
regime should be relevant, which we take to be of the form [16]

C̃(q, 0) = c0 + cα|q|α (3.1)

where α is a free parameter and c0, cα are normalization constants. For α > 0, the long-time
behaviour depends, to leading order, only on the first term while forα < 0, we have effectively
c0 = 0, to leading order. For the purpose of this paper, namely the study of the role of long-
range correlations in the initial conditions as parametrized by α, it is sufficient to study the
case c0 = 0, which we shall assume from now on. For α < 0, this corresponds to initial
correlations of the form Cr(0) ∼ r−d−α for large distances r = |r|. This initial condition
should lead to the following t → ∞ asymptotics of the auxiliary function:

A(t) 
 aαt
−(d+α)/2 aα = cα(2π)−d

∫
du e−2u2

uα. (3.2)

The case without initial correlations considered previously [7, 12, 13, 26] corresponds to
C̃(q, 0) = 1 and is recovered if we formally set α = 0. Any differences between the scaling
behaviour coming from the initial conditions (3.1) and for those analysed previously must
relate to a different long-time behaviour of the functions A(t) and f (t) (it is well known that
for large t, one has f (t) 
 (8πt)−d/2). The purpose of this section is to carry through the
technical analysis and especially to obtain the explicit scaling functions for the autocorrelation,
autoresponse and the fluctuation–dissipation ratio. The physical discussion of the results will
be presented in section 4.

The single-time correlator Cr(t) has been analysed in great detail by Coniglio et al [23]
in the context of coarse-grained field theory.

We now analyse the long-time behaviour of the two-time correlators and response
functions. For the questions we are interested in, namely the breaking of the fluctuation–
dissipation theorem and/or ageing effects, it is enough to restrict to temperatures at or below
criticality. Indeed, for T > Tc, the system will simply relax to equilibrium within a finite
timescale τeq ∼ (T − Tc)

−2ν , where ν is the known equilibrium correlation length exponent
(see [13] and the references therein). For the same reason, we restrict to d > 2 throughout
such that there is always a phase transition at a non-vanishing critical temperature Tc > 0.
In addition, the early stages of the evolution of the system (notably the evolution of the
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fluctuation–dissipation ratio) will depend on whether the system was initially prepared in an
equilibrium state or not but this information requires more knowledge on the initial state than
merely its low-momentum behaviour equation (3.1). Rather, the behaviour we are interested
in is described by the scaling or ageing limit which is reached when both the waiting time
s and the observation time t become simultaneously large, that is 1 � s ∼ t − s. As we
shall be interested in the scaling properties of C(t, s) and R(t, s), it is useful to work with the
dimensionless scaling variable

x = t

s
> 1. (3.3)

Taking the scaling limit t, s → ∞ with x fixed, it is convenient to rewrite the results
(2.18) and (2.21) of the previous section as follows:

C(t, s) 
 s−d/2+1

√
g(T , s)g(T , t)

[
aαs

−α/2−1

(
x + 1

2

)− 1
2 (d+α)

+
2T

(4π)d/2

∫ 1

0
dθg(T , sθ) (x + 1 − 2θ)−d/2

]
(3.4)

R(t, s) 
 (4π)−d/2s−d/2 (x − 1)−d/2
√
g(T , s)

g(T , t)

where we have neglected the correction terms to the leading scaling behaviour. Next, we need
the leading behaviour of g(T , t) for large t.

3.1. Non-equilibrium critical dynamics

We first consider the case when T = Tc, the equilibrium critical temperature. In general, we
expect the leading asymptotics of g(T , t) to be of the form

g(T , t) 
 g0(α, d)t
ψ(α,d) t � 1 (3.5)

where the dependence of ψ = ψ(α, d) must be calculated and g0 is a constant. We determine
ψ by finding first from equation (2.15) the low-p behaviour of g(T , p), which in turn is
given by the small-p behaviours of f (p) and A(p). These may be found from the integral
representations (2.14) using well-established techniques [13, 28]. At the critical point, the
results are as follows:

f (p) 
 A1 +
�(1 − d/2)

(8π)d/2
pd/2−1 + · · · 2 < d < 4

f (p) 
 A1 − A2p + · · · d > 4
(3.6)

where Tc = 1/(2A1) is the equilibrium critical temperature and Ak = (2π)−d
∫

dq
(2ω(q))−k, k = 1, 2, . . . , which exist for d > 2k. Similarly, we find

A(p) 
 aα�
(
1 − 1

2 (d + α)
)
p−1+(d+α)/2 0 < d + α < 2

A(p) 
 B1 +O
(
p,p−1+(d+α)/2

)
d + α > 2

(3.7)

where aα is given in equation (3.2) and B1 = (2π)−d
∫

dqC̃(q, 0)(2ω(q))−1 which exists
for d + α > 2 (if either d = 2, 4 or d + α = 0, 2, additional logarithmic factors will be
present, which we shall discard throughout). From this, g(T , p) follows and transforming
back to g(T , t), the exponent ψ(α, d) describing the leading behaviour for large t is found.
We summarize the results in table 1 and identify five regimes where the behaviour of g(T , t)
is different. It is convenient to characterize these regimes in terms of an effective dimension

D = d + α + 2 (3.8)
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Table 1. Values of the exponent ψ = ψ(α, d) which describes the long-time behaviour of g(Tc, t)

according to equation (3.5) and the exponent ϕ = 1 +ψ + α/2 in the five different scaling regimes
at criticality.

Regime Conditions ψ ϕ

I 2 < d < 4 2 < D < 4 −1 − α/2 0
II 4 < d 2 < D < 4 1 − (d + α)/2 (4 − d)/2

III 2 < d < 4 4 < D d/2 − 2 (d + α)/2 − 1
IV 4 < d 4 < D α > −2 0 α/2 + 1
V 4 < d 4 < D α < −2 0 α/2 + 1

Table 2. Values of the critical autocorrelation and autoresponse exponents a, b, λC and λR as
defined in equations (3.13) and (3.23) in the five scaling regimes.

Regime a b λC λR

I d/2 − 1 d/2 − 1 d + α/2 − 1 d − α/2 − 1
II d/2 − 1 1 (d + α)/2 + 1 (d − α)/2 + 1

III d/2 − 1 d/2 − 1 3d/2 − 2 3d/2 − 2
IV d/2 − 1 d/2 − 1 d d
V d/2 − 1 d/2 + α/2 d + α d

the meaning of which we shall discuss in section 4. From these results, we find the following
scaling forms:

C(t, s) = (4π)−d/2s−d/2+1 [s−ϕM0(x) +K0(x)
]

(3.9)
R(t, s) = (4π)−d/2s−d/2(x − 1)−d/2x−ψ/2

where the values of the exponent ϕ = 1 + ψ + α/2 are also listed in table 1 and

M0(x) = aα(4π)d/2

g0
x−ψ/2

(
x + 1

2

)−(d+α)/2

(3.10)

K0(x) = 2T x−ψ/2
∫ 1

0
dw wψ(x + 1 − 2w)−d/2.

Furthermore, the scaling of the fluctuation–dissipation ratio can be written in the form:

X(t, s) = T
(x − 1)−d/2x−ψ/2

s−ϕM(x) +K(x)
(3.11)

where the functionsM(x) and K(x) are defined by

M(x) = −
(
d + α

2
+ ψ

)
M0(x)− x

dM0(x)

dx
(3.12)

K(x) =
(

1 − d

2

)
K0(x)− x

dK0(x)

dx
and we see that the scaling of C(t, s) and consequently of X(t, s) depends on the sign of ϕ.
For that reason, the regimes IV and V have to be distinguished.

We can now list the scaling functions for both the autocorrelation and autoresponse
functions

C(t, s) = (4π)−d/2Tc s
−bfC(x) R(t, s) = (4π)−d/2s−1−afR(x) (3.13)

together with the fluctuation–dissipation ratio. The results for the exponents a and b are given
in table 2 below. For the response function, the scaling function simply is in all five regimes

fR(x) = (x − 1)−d/2x−ψ/2 (3.14)

and the values of ψ can be read from table 1. We shall return to this result in section 4.
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The functions fC(x) and X(t, s) are listed below: for regime I, we find

fC(x) =
[

21+α/2

∣∣∣∣�(1 − d/2)�(−α/2)
�(1 − (d + α)/2)

∣∣∣∣ x−(d+α/2−1)/2

+ 2x1/2+α/4
∫ 1

0
dy y−1−α/2(x + 1 − 2y)−d/2

]

 21+α/2

∣∣∣∣�(1 − d/2)�(−α/2)
�(1 − (d + α)/2)

∣∣∣∣ x−d/2−α/4+1/2 x → ∞. (3.15)

The fluctuation–dissipation ratio becomes, in the scaling limit, a function of x only, which
reads for α �= −2

X = X(x) = (x − 1)−d/2
[
−
∣∣∣∣�(1 − d/2)�(−α/2)
�(1 − (d + α)/2)

∣∣∣∣ 2α/2 (d + α

x + 1
− α

2
− 1

)
x−(d+α)/2

+ 2
∫ 1

0
dy y−1−α/2(x + 1 − 2y)−d/2

(
1

2
− α

4
+
d

2

2y − 1

x + 1 − 2y

)]−1



∣∣∣∣�(1 − d/2)�(−α/2)
�(1 − (d + α)/2)

∣∣∣∣ 2

2 + α
(2x)α/2 x → ∞ (3.16)

together with the leading behaviour for infinitely separated timescales x → ∞. For α = −2,
we find

X = X(x) =
[

1 +

(
x − 1

x + 1

)d/2 (
1 −

( x

x + 1

)1−d/2)]−1


 1 x → ∞. (3.17)

Therefore, if α �= −2, the limit fluctuation–dissipation ratio has the universal value X∞ = 0
but the approach towards that limit does depend on the initial condition, while for α = −2,
we have X∞ = 1 signalling that an equilibrium state will be reached.

The behaviour of the scaling function X(x) is illustrated in figure 1. In the left part
(figure 1(a)) we consider initial states with α � −2 which are more disordered than the
critical equilibrium state. In all cases, one starts from equilibrium at equal times, since
X(1) = 1. If α �= −2, the fluctuation–dissipation ratio decays with increasing x. However,
if α approaches the border between regions I and III, the scaling function X(I)(x) obtained
for region I goes over smoothly into that found for region III. Close to that boundary, quite
large values of x are needed in order to distinguish these functions. On the other hand, for
α = −2, the long-range properties of the initial state are the same as for the equilibrium state.
Although the system departs initially from equilibrium, since X(x) > 1, the non-equilibrium
short-range correlations are successively equilibrated and the system finally arrives at the
equilibrium value of the limit fluctuation–dissipation ratio X∞ = 1. If we now consider the
case α � −2 (figure 1(b)) with an initial state more ordered than the equilibrium state, the
behaviour is completely different. Starting from X(1) = 1, the fluctuation–dissipation ratio
increases with x and encounters a singularity at some finite value xs = xs(d, α). For x > xs ,
it is negative and rapidly decays to zero with increasing x.

For regime II, we find

fC(x) = 2(4π)d/2A2

(
1 − d + α

2

)
x(d+α)/4−1/2

(
x + 1

2

)−(d+α)/2

X(xs, s) = −(4π)−d/2(x − 1)−d/2

A2(1 − (d + α)/2)(1 + (d + α)(3x + 1)(2x + 2)−1)

(
x + 1

2

)(d+α)/2

s−(d−4)/2

(3.18)
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Figure 1. The scaling of the fluctuation–dissipation ratio X(x) as a function of x = t/s in regime
I for d = 3 and for several values of α. In panel (a), we also include the result X(III)(x) found
for regime III and given in equation (3.19). In panel (b) we also show the function X2DXY(x)
obtained in the 2D XY model in the spin-wave approximation [14] and given in equation (4.4).

where the integral A2 was defined above, after equation (3.6). Therefore for any value of
x,X(xs, s) = 0 in the scaling limit s → ∞, since d > 4 here.

For regime III, we have

fC(x) = 4

d − 2

(x − 1)−d/2+1x1−d/4

x + 1
X = X(x) =

(
1 +

2

d − 2

(
x − 1

x + 1

)2
)−1

(3.19)

which reproduces the scaling functions previously found [13] for α = 0. The entire scaling
functions turn out to be completely independent of α. Therefore, the scaling behaviour
in this region is governed by the effective value αeff = 0 in the initial condition (3.1)
and all scaling functions are universal. In particular, the limit fluctuation–dissipation ratio
X∞ = limx→∞X(x) = 1 − 2/d is a universal number, as expected.

We have for the case of regime IV:

fC(x) = 2

d − 2

(
(x − 1)−d/2+1 − (x + 1)−d/2+1) X = X(x) =

(
1 +

(
x − 1

x + 1

)d/2)−1

(3.20)

which again agrees completely with the earlier results found for α = 0 [13]. Again, the
scaling functions are independent of α and thus αeff = 0. In particular X∞ = 1/2 is a
universal number.

Finally, in the regime V, we find

fC(x) = 2(4π)d/2A2BV

(
x + 1

2

)−(d+α)/2

(3.21)

X(xs, s) = −(4π)−d/2(x − 1)−d/2(x + 1)

A2BV(d + α)(2x + 1)

(
x + 1

2

)(d+α)/2

s1+α/2
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where the constant BV is given by

BV =
[∫

du uα e−2u2

]
·
[∫

du
uα

2ω(u)

]−1

. (3.22)

ThereforeX(xs, s) = 0 in the scaling limit, since 1 + α/2 < 0.
From the x → ∞ asymptotics

fC(x) ∼ x−λC/z fR(x) ∼ x−λR/z (3.23)

and the known fact that z = 2 [1] for the spherical model at and below Tc, we read the critical
autocorrelation and autoresponse exponents λC and λR and summarize the results in table 2.
They will be discussed in section 4.

3.2. Phase ordering

Having found the scaling behaviour at criticality, we now turn to the ordered phase,
where T < Tc. This case was considered long ago in the context of the coarse-grained
O(n)-symmetric field theory in the limit n → ∞ [16, 21]. The relations (3.4) remain valid,
but the Lagrange multiplier g(T , t) now has for large times, the leading behaviour

g(T , t) 
 aα

M2
eq

t−(d+α)/2 (3.24)

where M2
eq = 1 − T/Tc is the squared equilibrium magnetization. In the scaling limit

s → ∞, t → ∞ but x = t/s fixed, one has for α � 0

C(t, s) = M2
eq

(
(x + 1)2

4x

)−(d+α)/4

R(t, s) = (4π)−d/2s−d/2(x − 1)−d/2x(d+α)/4 (3.25)

X(t, s) = 41−(d+α)/4T

(4π)d/2(d + α)M2
eq

(x + 1)d/2+α+1

(x − 1)d/2+1
s−d/2+1.

For α = 0, these results were already known [13, 21, 26] (for α > 0, the constant term in (3.1)
is dominating the long-time behaviour). As expected, the fluctuation–dissipation ratio X = 0
in the scaling limit. The scaling functions fC(x) and fR(x) are defined as

C(t, s) = M2
eqfC(x) R(t, s) = (4π)−d/2s−1−afR(x) (3.26)

and we obtain

a = d

2
− 1 fC(x) =

(
(x + 1)2

4x

)−(d+α)/4

fR(x) = (x − 1)−d/2x(d+α)/4 (3.27)

and formally b = 0 if we were to compare with the scaling (3.13) at criticality. From these,
using again equation (3.23), we have the autocorrelation and autoresponse exponents

λC = 1
2 (d + α) λR = 1

2 (d − α). (3.28)

These results, valid for T < Tc, supplement those for the critical case T = Tc given in
table 2. For arbitrary α < 0 the value of λC was already known4 [16]. A long time ago,
Newman and Bray [21] studied the case of zero waiting time, s = 0. From equations (2.18)
and (2.21) and the initial condition g(T , 0) = 1, one has

C(t, 0) = A(t/2)√
g(T , t)

∼ Meqt
−(d+α)/4 R(t, 0) = f (t/2)√

g(T , t)
∼ Meqt

−(d−α)/4 (3.29)

in full agreement with their results.
4 For theO(n)model with finite n, λC = d/2 for 0 > α > αc , where αc is known to leading order in 1/n. The result
of equation (3.28) for λC only holds true if α < αc. In the n → ∞ limit, αc = 0 [16].
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4. Discussion

The long-time behaviour of the kinetic spherical model depends on the spatial dimension d
and the parameter α which characterizes the initial condition, equation (3.1). We have already
introduced the effective dimension D (see equation (3.8)). In terms of these, the equilibrium
correlation function Ceq(r) at criticality and the initial correlation function Cini(r) = Cr(0)
scale for large distances r = |r| as

Ceq(r) ∼ r−(d−2) Cini(r) ∼ r−(D−2) (4.1)

(since the equilibrium critical exponent η = 0 for the spherical model). Therefore, we have
studied the influence of the fluctuations of an effectively D-dimensional system on a model
defined in d dimensions5. We can conclude:

1. In the scaling limit which describes the ageing of the system, the results obtained for a
quench to a temperature T < Tc below the critical point and given in equations (3.27)
and (3.28) show that the effect of initial long-range correlations persists for all times of
the ongoing non-equilibrium behaviour, but without provoking any qualitative changes,
as observed long ago [16, 21]. Remarkably enough, however, for times 1 � t − s � s

which in the scaling limit corresponds to x 
 1 and for any initial condition, the two-time
autocorrelations saturate at a plateau value C(x = 1) 
 M2

eq (see equation (3.25)). For
larger differences between the waiting time s and the observation time t, C(t, s) decays
to zero according to a power law which now again depends on the initial conditions and
the system shows thus a sort of memory of its initial state.

Surprisingly, the results for a quench precisely to T = Tc are qualitatively different.
They are summarized in tables 1 and 2 and the resulting phase diagram is shown in figure 2.
Indeed, we find five regimes with different ageing behaviours. These regimes are
distinguished by the presence (when 2 < d < 4 and/or 2 < D < 4) of strong critical
fluctuations in either the equilibrium or the initial state, respectively, or else their absence
(when d > 4 and/or D > 4) when either the equilibrium or the initial state are in the
mean-field regime. In addition, if both d > 4 and D > 4, it is of relevance whether
the initial correlations decay faster than those in the equilibrium state or not. If d = D,
the system is prepared in its critical equilibrium state, the fluctuation–dissipation theorem
is valid and no ageing occurs. That is the situation of equilibrium critical dynamics.
Specifically, we find

(a) Only if the initial correlations are in the mean-field regime, i.e. D > 4, and if in
addition the initial correlations decay faster than in equilibrium, the system may show
a non-vanishing value of the fluctuation–dissipation ratioX∞. In these cases (regimes
III/IV), the entire scaling functions fC(x), fR(x) and X(x) do not depend on the
initial conditions at all and agree with the previously known results obtained for a
disordered initial state of infinite temperature (see [12, 13, 26]). One therefore has
effective initial conditions such that αeff = 0. That finding is in full agreement with
the expected [4, 13] universality of these scaling functions and of X∞ in particular.

(b) A non-trivial result for the scaling of the fluctuation–dissipation ratio X(x) is found
if both the equilibrium and the initial states are fluctuation-dominated (regime I). The
limit value for very large separations x = t/s → ∞ between the waiting time s and
the observation time t is the universal value X∞ = 0, provided that α �= −2, but the
approach towards this limit depends on the initial condition throughX(x) ∼ x−|α|/2,

5 Practically, long-range initial conditions as studied here might be realized by coupling the degrees of freedom of
the model under study to those of another system at criticality. Alternatively, one might consider a spin system with
long-range interactions J = J(r) and use this to prepare an initial state with long-range correlations.



Response of non-equilibrium systems with long-range initial correlations 5587

3 4 5 6
d

2

3

4

5

6

D

I II

III IV

V

(α=–2)

(α=0)

Figure 2. Kinetic phase diagram at T = Tc depending on the spatial dimension d and on the
effective dimension D = d + α + 2 where α is the exponent of the initial condition equation (3.1).
The five different scaling regimes I, . . . , V are shown. The dashed line (α = 0) corresponds to the
case of a completely disordered initial state, the dashed-dotted line (α = −2) corresponds to an
equilibrium initial state at T = Tc and the fully ordered zero-temperature initial state corresponds
to the line D = 2.

as was illustrated in figure 1. It is not impossible that the rather trivial valueX∞ = 0
which is more typical of a low-temperature phase might be a peculiarity of the
spherical model. On the other hand, if α = −2, thenX∞ = 1 and the system evolves
towards equilibrium.

(c) If the equilibrium state is in the mean-field regime and if in addition the initial
correlations decay slower than in equilibrium, the fluctuation–dissipation ratio X
vanishes in the scaling limit, independently of the value of x = t/s (regimes II/V).
Despite having fixed the temperature at its critical value, this behaviour is typical for
a quench into the low-temperature ordered phase.

It would be of interest to see whether a similar variety of different types of non-equilibrium
critical dynamics may be established for different spin systems (especially with z �= 2)
and in particular, whether the role of the equilibrium and/or the initial state being in the
mean-field regime can be confirmed. As a preparation for this we briefly treat in the
appendix, an example where the mean magnetization does not vanish.

2. Turning to the values of the autocorrelation exponent λC and the autoresponse exponent
λR , we find that one of the following two scenarios is realized: either (i) the two exponents
are equal

λC = λR (4.2)

which occurs at criticality in the regimes III and IV characterized by αeff = 0 and where
also X∞ �= 0 or else (ii) they satisfy the relation

λC = λR + αeff (4.3)

which is realized in the entire ordered phase and for the critical regimes I, II and V, where
αeff = α andX∞ = 0. As an extreme case, this also includes a completely ordered initial
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state, where Cini(r) ∼ cste which corresponds to α = −d . Up to eventual logarithmic
corrections, this case may be included by taking the limitD → 2+.
We point out that the results λC/z = η/4 and λR/z = 1 + η/4 obtained for the 2D
XY model [14] for a fully ordered initial state (therefore α = −d = −2) in the low-
temperature phase are consistent with equation (4.3), since z = 2 in that model. Indeed,
the behaviour of the fluctuation–dissipation ratio X2D XY(x) of the 2D XY model is
quite analogous to that found here for the spherical model in regime I at criticality. In
figure 1(b) we show the fluctuation–dissipation ratio of the 2D XY model when starting
from a fully ordered initial state:

X2D XY(x) =
[

1 − (x − 1)2

2(x + 1)

]−1

(4.4)

which is valid in the entire low-temperature phase, using the spin-wave approximation
[14]. The similarity with the functions X(x) of the spherical model in regime I with
α < −2 is evident.
Therefore, we conjecture that the relationship between λC and λR is, in general, given
by equation (4.3) and that only in those special cases where αeff = 0 applies, these two
exponents happen to be equal. That was indeed the case in all models reviewed in [4].
Tests of the conjectured scaling relation (4.3) in other models would be most welcome.
Similarly, the usual anticipation, see, e.g. [4], that at criticality the two exponents
a = b = 2β/νz, where β and ν are standard equilibrium critical exponents, can be
checked through the entries of table 2. It appears again more as a property of certain
initial conditions than as a generally valid statement. From table 2, a = b appears to hold
whenever X(t, s) does not vanish identically for all x in the scaling limit. In these cases
the proposed relationship with the exponents β, ν, z seems rather to be a hyperscaling
relation since it does not hold in regime IV.

3. Having examined the asymptotic properties of the scaling functions fC(x) and fR(x) for
large x, we now turn to their functional form for finite values of x. Indeed, as already
mentioned in the introduction, conformal invariance predicts that the scaling function of
the autoresponse function should be given by [18, 19]

fR(x) = x1+a−λR/z (x − 1)−1−a . (4.5)

That prediction can be tested by comparing with the exact result (3.14) for a critical
quench and with (3.27) for a quench into the ordered phase. Inserting the values of the
exponents a and λR which can be read from table 2 and from equations (3.27) and (3.28),
respectively, shows perfect agreement, both below criticality and at criticality for all five
ageing regimes.
In addition, we may also test the full spacetime-dependent response function. Since the
dynamical exponent z = 2 in our model, conformal invariance predicts for z = 2 [18, 29]

Rr(t, s) = R(t, s) exp

(
−M

2

r2

t − s

)
(4.6)

where spatial translation invariance is already taken into account, the autoresponse
function R(t, s) is given as before by equation (1.6) and M is a non-universal and
dimensional constant. To check this, we calculate the full response function from
equation (2.20). In the scaling limit we are interested in, where both t, s as well as
their difference t − s become simultaneously large, we may use the q → 0 limit (2.6) in
the integral

Rr(t, s) = (2π)−d
√
g(T , s)

g(T , t)

∫
dq exp[−ω(q)(t − s)− iq · r] (4.7)
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and it is easy to see that the resulting Gaussian integrals reproduce equation (4.6) exactly,
with M = 1/2.
This suggests that the presence of conformal invariance in ageing systems should be
independent of spatially long-ranged correlations in the initial state. Further tests
of conformal invariance in different ageing systems with spatially long-range initial
conditions are called for.

Summarizing the study of the influence of spatially long-range correlations in the initial
state on the long-time behaviour of two-time observables of the exactly solvable spherical
model has led us to the recognition of several new types of non-equilibrium critical dynamics
in that model. As a consequence, we could formulate the conjecture equation (4.3) on the
relationship between the autocorrelation exponent λC and the autoresponse exponent λR .
Finally, the hypothesis of conformal invariance in ageing ferromagnetic systems could be
tested in a new way.
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Appendix. Some remarks on the 1D Glauber–Ising model

Here we consider briefly some non-fully disordered initial conditions in the 1D kinetic Ising
model with Glauber [30] dynamics. The Hamiltonian is on a chain of N sites with periodic
boundary conditions

H = −J
N∑
i=1

σiσi+1 (A1)

where σi = ±1 are the Ising spins. The dynamics may be given through the heat bath rule,
which gives the probability of finding the spin variables σi(t + 1) in terms of those at time t

P(σi(t + 1) = ±1) = 1

2

[
1 ± tanh

(
J

T
(σi−1(t) + σi+1(t))

)]
. (A2)

Here we consider the following initial conditions in terms of the spin–spin correlator
Cr(t) = 〈σr(t)σ0(t)〉:

Cr(0) = M2
0 +

(
1 −M2

0

)
δr,0 (A3)

where M0 = Mr(0) is the initial averaged magnetization. This allows a simple case study of
situations where the mean magnetization Mr(t) does not vanish. Here and in the following
spatial translation invariance is already taken into account. We study the long-time evolution
of the 1D model after a quench to zero temperature at time t = 0.

The exact solution of the model is closely parallel to the standard lines as presented for the
special case M0 = 0 in [10, 11]. We shall therefore merely state our results. First, the mean
magnetization Mr(t) = Mr(0) = M0 does remain constant for all times t. We are interested
in the connected autocorrelation function �(t, s) and autoresponse functionR(t, s) defined as

�(t, s) = 〈σr(t)σr(s)〉 − 〈σr(t)〉〈σr(s)〉 (A4)

R(t, s) = T
δMr(t)

δHr(s)

∣∣∣∣
Hr=0

(A5)

whereHr is an external magnetic field at the site r.
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In 1D, we find in the scaling limit t, s → ∞ but with x = t/s > 1 fixed

�(t, s) = (
1 −M2

0

) 2

π
arctan

√
2

x − 1
R(t, s) = (

1 −M2
0

) 1

πs

√
1

2(x − 1)
(A6)

and the fluctuation–dissipation ratio X(t, s) = R(t, s)(∂�(t, s)/∂s)−1 becomes a function of
x only and readsX(t, s) = X(x) = (x+1)/2x. Up to the prefactor 1−Mr(t)Mr(s) = 1−M2

0 ,
the results for �(t, s) and R(t, s) (and therefore also for X(x)) are exactly the same as found
in [10, 11] for the autocorrelation and autoresponse functions at M0 = 0. Therefore, unless
M0 = 1 and the system is prepared in a zero-temperature equilibrium state, the exponent
α introduced in the text takes the value αeff = 0 here. That agrees with the fact that the
autocorrelation and autoresponse exponents are equal, λC = λR = 1.

It would be interesting to study the effects of non-fully disordered initial conditions in
wider settings, e.g. in higher dimensions, conserved order parameters and so on.
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